TERCEIRA QUANTIZAÇÃO E UNIFICAÇÃO GERAL PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
As Equações de Friedmann são um conjunto de equações em cosmologia física que governam a expansão métrica do espaço em modelos homogêneos e isotrópicos do Universo dentro do contexto da Teoria Geral da Relatividade. Foram apresentadas por Alexander Friedman em 1922 [1] a partir das equações de campo de Einstein para a métrica de Friedman-Lemaître-Robertson-Walker e um fluido com uma densidade de energia ( ) e uma pressão ( ) dadas. As equações para curvatura espacial negativa foram dadas por Friedmann em 1924.[2]
Pressupostos[editar | editar código-fonte]

As equações de Friedmann começam com a hipótese simplificadora de que o universo é espacialmente homogêneo e isotrópico, i.e. o Princípio Cosmológico; empiricamente, isto é justificado em escalas maiores que ~100 Mpc. O Princípio Cosmológico implica que a métrica do universo deve ser da forma:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é uma métrica tridimensional que deve ser de um (a) espaço plano, (b) uma esfera de curvatura positiva constante ou (c) um espaço hiperbólico com curvatura negativa constante. O parâmetro discutido abaixo toma o valor 0, 1, -1 nestes três casos, respectivamente. É este fato que nos permite falar de uma forma sensata de um "fator de escala", .
As equações de Einstein agora relacionam a evolução deste fator de escala para a pressão e energia da matéria no universo. As equações resultantes são descritas abaixo.
Equações[editar | editar código-fonte]
As equações são:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a constante cosmológica possivelmente causada pela energia do vazio, é a constante gravitacional, é a velocidade da luz, é o fator de escala do Universo e é a curvatura gaussiana quando (p.ex. hoje, na atualidade). Se a forma do universo é hiperesférica e é o raio de curvatura ( no momento atual), então . Geralmente, é a curvatura gaussiana. Se é positiva, então o Universo é hiperesférico. Se é zero, o Universo é plano e se é negativo o Universo é hiperbólico. Note-se que e são função de . O parâmetro de Hubble, , é a velocidade de expansão do universo.
Estas equações às vezes se simplificam redefinindo a densidade de energia e a pressão:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
para obter:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O parâmetro de Hubble pode mudar no tempo se outros membros da equação são dependentes do tempo (em particular a densidade de energia, a energia do vazio e a curvatura). Avaliando o parâmetro de Hubble no momento atual resulta que a constante de Hubble que é a constante de proporcionalidade da lei de Hubble. Aplicado a um fluido com uma equação de estado dada, as equações de Friedmann dão como resultado a evolução no tempo e a geometria do Universo como função da densidade do fluido.
Alguns cosmólogos chamam à segunda destas duas equações a equação de aceleração e reservam o termo equação de Friedmann só para a primeira equação.
O parâmetro de densidade[editar | editar código-fonte]
O parâmetro de densidade, , se define como a relação da densidade atual (ou observada) relacionado à densidade crítica do Universo de Friedmann. Uma expressão para a densidade crítica se encontra assumindo que é zero (como é para todos os Universos de Friedmann básicos) e estabelecendo a curvatura igual a zero. Quando se substituem estes parâmetros na primeira equação de Friedmann encontramos que:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
E a expressão para o parâmetro de densidade (útil para comparar diferentes modelos cosmológicos) se obtém que é:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Este termo originalmente foi utilizado como uma maneira de determinar a geometria do campo no que é a densidade crítica para a qual a geometria é plana. Assumindo uma densidade de energia do vazio nula, se é maior que um, a geometria é fechada e o Universo eventualmente parará sua expansão e então se colapsará. Se é menor que um, será aberto e o Universo se expandirá para sempre. Entretanto, também se podem sintetizar os termos de curvatura e da energia do vazio numa expressão mais geral para no caso de que este parâmetro de densidade de energia seja exatamente igual à unidade. Então é uma questão de medir os diferentes componentes, normalmente designados por sub-índices. De acordo com o modelo Lambda-CDM, há importantes componentes de devido a bárions, matéria escura fria e energia escura. A geometria do espaço-tempo foi medida pelo satélite WMAP estando próxima de ser uma geometria plana, o que quer dizer, que o parâmetro de curvatura é aproximadamente zero.
A primeira equação de Friedmann frequentemente se escreve formalmente com os parâmetros de densidade.
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde, é a densidade de radiação atual, é a densidade da matéria (escura mais a bariónica) atual e é a constante cosmológica ou a densidade do vazio atual.
Equação de Friedmann reescalada[editar | editar código-fonte]
Estabelecendo onde a_0 y H_0 são em separado o fator de escala e o parâmetro de Hubble atuais. Então podemos dizer que:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde . Para qualquer forma do potencial efetivo , há uma equação de estado que a produzirá.
RELATIVIDADE SDCTIE GRACELI EM:
Forma matemática da equação do campo de Einstein[editar | editar código-fonte]
A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.
A equação do campo se apresenta como se segue:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde o tensor é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e é o tensor de energia-momento. A constante de acoplamento se dá em termos de é Pi, é a velocidade da luz e é a constante gravitacional.
O tensor da curvatura de Einstein se pode escrever como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde além disso é o tensor de curvatura de Ricci, é o escalar de curvatura de Ricci e é a constante cosmológica.
A equação do campo portanto também pode apresentar-se como se segue:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.
Estas equações são a base da formulação matemática da relatividade geral.
Interpretacão geométrica da Equação de Einstein[editar | editar código-fonte]
A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar do espaço é proporcional à densidade aparente :
onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.
É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc.
Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~ cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.
RELATIVIDADE SDCTIE GRACELI EM:
Equações de Einstein-Maxwell[editar | editar código-fonte]
Se o tensor energia-momento é aquele de um campo eletromagnético, i.e. se o tensor momento-energia eletromagnético
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- RELATIVIDADE SDCTIE GRACELI EM :
- Um sistema em um estado estacionário, (ou regime permanente para a engenharia), tem numerosas propriedades que são inalteráveis no tempo. Isto implica que qualquer propriedade p do sistema, a derivada parcial em relação ao tempo é zero:[1][2]